Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis.
نویسندگان
چکیده
NADH dehydrogenase is a key component of the respiratory chain. It catalyzes the oxidation of NADH by transferring electrons to ubiquinone and establishes a proton motive force across the cell membrane. The yjlD (renamed ndh) gene of Bacillus subtilis is predicted to encode an enzyme similar to the NADH dehydrogenase II of Escherichia coli, encoded by the ndh gene. We have shown that the yjlC-ndh operon is negatively regulated by YdiH (renamed Rex), a homolog of Rex in Streptomyces coelicolor, and a redox-sensing transcriptional regulator that responds to the NADH/NAD(+) ratio. The ndh gene regulates expression of the yjlC-ndh operon, as indicated by the fact that mutation in ndh causes a higher NADH/NAD(+) ratio. An in vitro study showed that Rex binds to the downstream region of the yjlC-ndh promoter and that NAD(+) enhances the binding of Rex to the putative Rex-binding sites in the yjlC-ndh operon as well as in the cydABCD operon. These results indicated that Rex and Ndh together form a regulatory loop which functions to prevent a large fluctuation in the NADH/NAD(+) ratio in B. subtilis.
منابع مشابه
Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis.
A variety of pathways for electron and carbon flow in the soil bacterium Bacillus subtilis are differentially expressed depending on whether oxygen is present in the cell environment. This study characterizes the regulation of the respiratory oxidase cytochrome bd and the NADH-linked fermentative lactate dehydrogenase (LDH). Transcription of the cydABCD operon, encoding cytochrome bd, is highly...
متن کاملredox poise in Streptomyces coelicolor
This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given ...
متن کاملImaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor.
NADH is a key metabolic cofactor whose sensitive and specific detection in the cytosol of live cells has been difficult. We constructed a fluorescent biosensor of the cytosolic NADH-NAD(+) redox state by combining a circularly permuted GFP T-Sapphire with a bacterial NADH-binding protein, Rex. Although the initial construct reported [NADH] × [H(+)] / [NAD(+)], its pH sensitivity was eliminated ...
متن کاملProteomic Evidences for Rex Regulation of Metabolism in Toxin-Producing Bacillus cereus ATCC 14579
The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we...
متن کاملSuitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa
BACKGROUND Polyketides, such as spinosad, are mainly synthesized in the stationary phase of the fermentation. The synthesis of these compounds requires many primary metabolites, such as acetyl-CoA, propinyl-CoA, NADPH, and succinyl-CoA. Their synthesis is also significantly influenced by NADH/NAD+. Rex is the sensor of NADH/NAD+ redox state, whose structure is under the control of NADH/NAD+ rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 188 20 شماره
صفحات -
تاریخ انتشار 2006